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The axisymmetric boundary-layer separation of an incompressible impulsively started
flow in a wavy-walled tube is analysed at moderate to high values of the Reynolds
number. The investigation is carried out by numerical integration of either the
Navier–Stokes equations or Prandtl’s asymptotic formulation of the boundary-layer
problem. The presence of an adverse pressure gradient induces reverse flow at the tube
wall independently of the Reynolds number; its occurrence can be predicted by a
timescale analysis. Following that, the viscous calculations show different dynamics
depending on the Reynolds number. As the Reynolds number increases, the boundary
layer has in a well-defined internal structure where longitudinal lengthscales become
comparable with the viscous one. Thus the boundary-layer scaling fails locally, with a
minimum of pressure inside the boundary layer itself. The formation of the primary
recirculation is well captured by the asymptotic model which, however, is not able to
describe the roll-up of the vortex structure inside the recirculating region. This
inadequacy appears well before the flow evolves to the characteristic terminal
singularity usually assumed as foreshadowing the vortex shedding phenomenon. The
outcomes are compared with the existing results of analogous problems giving an
overall agreement but improving, in some cases, the physical picture.

1. Introduction

The separation of the boundary layer from a rigid surface is a common feature of
a large variety of fluid dynamics problems. Classical examples are given by any stream
flowing over an irregular boundary as well as by the motion of a body in a fluid
otherwise at rest. Of particular relevance to this paper is the separation induced by
external vortices which may result from previously separated vorticity or as a
forerunner of wall turbulence structures.

Commonly, the separation of the boundary layer represents the rapid response to
any modification in the external flow which induces a pressure growth along the
direction of the motion. The adverse pressure gradient causes a deceleration in the wall
flow which then has a tendency to detach. Because of its general relevance, the
impulsively started case has been most commonly investigated. At low or moderate
Reynolds number, the numerical solution of the Navier–Stokes equations is able to
give a complete description of the flow. On the other hand, at large values of the
Reynolds number, the Navier–Stokes formulation must be approximated by an
asymptotic description in order to reduce the computational effort. Moreover, while
the experimental studies at moderate Reynolds number are able to show the separation
well, it is difficult to obtain a clear picture at high Reynolds number since the boundary
layer is very thin and the phenomenon arises and develops at small spatial scales within
the boundary layer.
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A large number of flows with practical relevance are characterized by extremely high
values of the Reynolds number, and these can be numerically solved only by using the
asymptotic boundary layer approach originally formulated by Prandtl. The external
pressure gradient which drives the phenomenon is often assumed to be caused by the
wall geometry or by the presence of a rectilinear vortex convected above the surface ;
the latter represents the basis for effectively inviscid flows containing vorticity. The
two-dimensional vortex-driven separation has been extensively studied by Doligalski &
Walker (1984) for one vortex convected in a uniform flow and by Ersoy & Walker
(1985, 1986) for counter-rotating vortex pairs near a wall, showing the creation of one
vortex (respectively two vortices) within the boundary layer, of rotation opposite to the
external inviscid vortex.

The results show the local thickening of the boundary layer terminating with the
breakdown of the classical boundary-layer approximation in the form of a terminal
singular behaviour of the solution. The failure of such an asymptotic scheme is
generally interpreted as occurring when the thickness of the layer becomes comparable
with the lengthscale of the external flow, and it is physically assumed to correspond to
an ejection of vorticity.

The one-vortex case has also been investigated using the interacting boundary-layer
technique (Chuang & Conlisk 1989), which takes into account the modification in the
external flow field due to the boundary-layer thickening and consequently retards
the appearance of the terminal singularity. This approach shows the splitting of the
separated region with the formation of a secondary vortex within the boundary layer
and a weak dependence of the flow evolution on the Reynolds number. A shear-layer
region is also identified by the authors as a possible path to the ejection of the
secondary vortex into the outer flow, which is still assumed to be the physical
explanation of the mathematical singularity. The same problem has been solved using
the Lagrangian technique (Peridier, Smith & Walker 1991a) first introduced by Van
Dommelen & Shen (1980), which is able to describe the flow up to the appearance of
a singularity in the boundary-layer solution and in practice confirms the results
obtained by Doligalski & Walker (1984). However, the authors found that the
interacting theory coupled with the Lagrangian formulation (Peridier, Smith & Walker
1991b) produces a singularity at a time earlier than that computed without interaction,
contradicting the results obtained with the Eulerian formulation (Chuang & Conlisk
1989).

A numerical and experimental study of the boundary layer separation due to the
impact of a vortex ring on a plane wall has been performed by Walker et al. (1987) ;
the results obtained by solving the problem in the axisymmetric approximation show
the typical behaviour of the separated region near the wall and a more abrupt
boundary-layer growth than in the plane case. The authors pointed out that the
classical theoretical approach is able to describe the formation of a separated vortex
ring, but it is unable to capture the experimentally detected birth of a secondary vortex
ring, which has the same direction of rotation of the first one. The classical Eulerian
approach has been followed to study the dynamics of the boundary layer induced on
a plane wall by a three-dimensional vortex loop (Ersoy & Walker 1987) ; the leading
terms of the flow velocities are computed on and near the symmetry plane of the vortex.
A variety of three-dimensional separation phenomena is detected, indicating the
possibility of a developing eruption at spanwise locations away from the symmetry
plane. Different separation patterns are detected depending upon whether the vortex
moves towards the wall or recedes from it. An analogous analysis has been performed
in the case of a rectilinear vortex filament approaching a spherical body by Pedrizzetti
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(1992), which showed the influence of the initial distance between vortex and body
surface upon the boundary-layer dynamics. The full three-dimensional boundary-layer
problem has been numerically solved for a vortex approaching a cylinder (Affes, Xiao
& Conlisk 1994), showing more complex separation patterns than the bidimensional
problem; the reversed-flow region evolves to a three-dimensional separation ridge
which is eventually ejected into the external stream.

The vortex-driven problem does not exhaust the variety of high-Reynolds-number
flows investigated using the boundary-layer approximation, which also includes the
impulsively started translating (Van Dommelen & Shen 1980; Henkes & Veldman
1987; Riley & Vasantha 1989) and roto-translating cylinder problem (Ece, Walker &
Doligalski 1984). The translating cylinder problem has been studied using the
Lagrangian approach (Van Dommelen & Shen 1980) ; the results are comparable with
those obtained with the Eulerian approach (Henkes & Veldman 1987), both with
classical and interactive formulation. In the latter work, the local splitting of the
separated region into a double-layer structure has been observed by using the
interacting model, which seems to give a better approximation of the Navier–Stokes
solution at Reynolds number equal to 10% than the classical approach. Nevertheless,
the authors point out that late in the calculation the boundary layer is probably too
thick for the interaction model to be accurate. Riley & Vasantha (1989) investigated the
same problem by solving the vorticity–streamfunction formulation in which no explicit
assumption about the pressure gradient is required; by this method the calculation
does not seem to become singular. These results are in agreement with those obtained
at moderate Reynolds number by integrating the Navier–Stokes equations, up to the
appearance of the first separated region. Afterwards, the solutions begin to diverge,
suggesting different dynamics of the vorticity shedding as can be found in the pitching-
up airfoil problems (Doligalski, Smith & Walker 1994 and references therein).

An analogous initial agreement between the Navier–Stokes and the boundary-layer
solutions has been observed in the flow upstream of a cylinder–flat plate juncture. The
unsteady separation has been studied at high Reynolds number (Puhak, Degani &
Walker 1995) by coupling Eulerian and Lagrangian formulations of the classical
boundary-layer approximation. The analysis of the flow in the plane of symmetry is
related to experimental (Acarlar & Smith 1987; Smith, Fitzgerald & Greco 1991) and
numerical results for moderate-Reynolds-number flows (Visbal 1991), demonstrating
that the asymptotic description is able to capture the birth of the necklace vortex. At
the final stage of calculation, in the boundary-layer solution there is sharp focusing of
such a necklace vortex, while the numerical and experimental results for a wide range
of Reynolds number show more complex dynamics (Baker 1979; Thomas 1987; Visbal
1991; Smith et al. 1991; Doligalski et al. 1994).

The results discussed above show a partial disagreement between the asymptotic
analysis and the viscous observations in the boundary-layer evolution during a
substantial period of time following the appearance of the primary circulation cell and
preceding the shedding phenomenon. During this period of time, inside the boundary
layer the major nonlinear development of vorticity takes place and thus a confirmed
knowledge of the dynamics is relevant to many problems like, for example, the
quantification of stresses or the prediction and control of the shedding phenomenon
itself. However, in order to really distinguish the phenomena described at such small
scales by a viscous simulation and to contrast them with the asymptotic prediction a
careful comparison must be performed and definitive results are difficult to extract
from data obtained by different authors for similar cases.

Another open question in the description of the boundary-layer dynamics by the
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Prandtl approximation is the physical significance of the terminal singular structure.
This, which is also found in the interacting model, is generally seen as the mathematical
failure of boundary-layer scaling when the scaled normal length tends to infinity
because its physical value becomes of order of unity, corresponding to the shedding of
vorticity. Furthermore it has been shown that the terminal structure is characterized by
a mathematical singularity usually localized far from the wall (Van Dommelen &
Cowley 1990) and several analyses of the nature of such a singularity have been
performed in the Prandtl approach (Peridier et al. 1991a, b ; Cassel, Smith & Walker
1996). A parallel study of the boundary-layer evolution using a complete viscous
calculation could be used to verify the physical interpretation of the terminal structure
and possibly to find the location of the singularity in the regular viscous layer.

The present work concerns the impulsively started flow inside a wavy-walled duct.
This represents a prototype for the class of problems in closed pipe systems
characterized by strongly accelerating flows, which includes the transient dynamics of
tube systems in engineering and biomedical fields, and a model problem for some cases
of the systolic phase in circulatory systems. However the present work is focused on the
idealized separation phenomenon and all additional complexities due to wall elasticity,
fluid compressibility, or pre-existing flow inhomogeneities, including turbulence, are
excluded.

The boundary-layer separation due to the enlargement of the section in a wavy-
walled tube is studied here. The impulsively started condition is assumed by imposing
an instantaneous value of the discharge. The Prandtl approach to the problem is
numerically solved in the axisymmetric approximation by computing the inviscid bulk
flow and the unsteady boundary-layer equations. In a circular geometry the assumption
of axial symmetry is reasonable in the initial instants of a separating boundary layer ;
however, it will fail later once the vorticity has been shed into the bulk flow. The
axisymmetric approximation allows a numerical resolution of the complete viscous
problem governed by the Navier–Stokes equations which are integrated for several
moderately high values of the Reynolds number. The dynamics of separation is
analysed and a careful comparison between the viscous evolution and the asymptotic
results is presented.

In what follows we will denote as separation the occurrence of a closed circulating
cell, or a double vorticity layer, inside the boundary layer while, in order to avoid
confusion, the phenomenon of ejection of vorticity outside the boundary layer will be
referred as shedding.
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2. Mathematical definition

2.1. The Na�ier–Stokes problem

Consider the axisymmetric motion of a viscous incompressible fluid, with kinematic
viscosity ν and density ρ, in a wavy-walled tube due to a suddenly imposed flow rate
Q$

!
. Let R

!
be the mean radius of the duct and U

!
the velocity averaged over the section

of radius R
!
. Thus the discharge and tube radius are given by

Q$

!
¯πR#

!
U
!
, R*(x*)¯R

!
R(x*}R

!
), (1)

where x* is the dimensional coordinate coincident with the tube axis. Choosing R
!
and

U
!
as the unit length and velocity, respectively, the dimensionless discharge Q

!
is equal

to π and the dimensionless radius of the tube is given by R(x), which in the present
work is assumed (figure 1) to be

R(x)¯ 1®"

#
δ cos (2πx}L). (2)

Suppose that the pipe axis is the x-axis of a cylindrical system of coordinate ²x, r, θ´.
Thus we can write the axisymmetric form of the Navier–Stokes equation in the
vorticity–streamfunction formulation
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where ω(x, r, t) is the azimuthal vorticity, ψ(x, r, t) the Stokes streamfunction and
Re¯R

!
U
!
}ν the Reynolds number. The vorticity and streamfunction are related by

the Poisson equation
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; (4)

the velocity field can be computed from the streamfunction (Batchelor 1967).
Equations (3) and (4) must be completed with boundary conditions. Periodicity is

assumed in the x-direction. On the tube axis, the boundary conditions are given by
symmetry considerations, resulting in

ω¯ 0, ψ¯ 0 at r¯ 0. (5)

At the wall of the duct the velocity vector must vanish. A zero value for the normal
velocity implies that the streamfunction is constant along the wall and proportional to
the discharge flowing in the tube (Batchelor 1967). The condition of vanishing
tangential velocity implies that the first-order normal derivative and the streamfunction
and the second-order mixed derivative are zero. These, with equation (4), specify the
value of the vorticity at the wall. The r-coordinate is changed by using a shearing
transformation r¯ zR(x) (Eiseman 1985; Ralph 1986) ; the z-coordinate is stretched by
defining a ζ-coordinate as z¯ tanh (aζ )}tanh (a), being a the stretching parameter
(Pedrizzetti 1996). The complete formulation and details of the numerical procedure
are described in Pedrizzetti (1996).

2.2. The boundary-layer problem

The case of impulsively started motion defined in the previous section can also be
studied in the boundary-layer approximation. Consider a general system of coordinates
²x$

"
,x$

#
,x$

$
´ ; in the present case, let x$

"
be the x-axis of the pipe, x$

#
be the θ-coordinate
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of a cylindrical system and x$

$
the distance from the wall surface. Let ²�$

"
, �$

#
, �$

$
´ be the

velocity vector, where �$
"

and �$
$

are the tangential and normal components in the
meridian plane, respectively, and �$

#
the θ-component. Define the following

dimensionless variables :
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The boundary-layer equations of motion in the axisymmetric approximation are
obtained by the Navier–Stokes equations written in a general orthogonal coordinate
system neglecting higher-order terms with respect to Re−"/# (Crabtree, Ku$ chemann &
Sowerby 1963) :
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where h
"
¯ (1R«(x)#)"/# and h

#
¯R(x). The no-slip condition at the wall, the

matching with the external inviscid solution and the initial condition at t¯ 0, are
respectively
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periodicity is assumed in the x
"
-direction, and U

"
is the inviscid flow velocity. The

normal equation of motion in this asymptotic limit gives that pressure does not vary
along x

$
, i.e. p¯ p(x

"
) ; thus the pressure gradient term in equation (7) can be written
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The inviscid velocity U
"
(x

"
) is derived by numerically solving the zero-vorticity case of

equation (4) and then computing the velocity component tangential to the wall.
In the numerical integration of (7) and (8), we introduced a stretched normal

coordinate, η¯ log ((x
$
b)}b), ensuring a better resolution close to the wall, where b

is the stretching parameter. The boundary layer equations (7) and (8) become
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which are numerically solved with the boundary condition (9a) imposed at η¯ 0 and
condition (9b) imposed at a large, but finite, η¯ η

max
. Equation (11) is integrated in
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time by using an explicit fourth-order Runge–Kutta scheme; spatial derivatives are
approximated with a centred second-order finite differences method. The velocity
component �

$
is derived by integrating the continuity equation (12) on a staggered grid.

A number of different grid sizes and time steps have been used in order to define the
appropriate computational resolution. First, the numerical results have been compared
with the analytical solution of the rectilinear duct case, in order to check the influence
of the stretching parameter b on the solution close to the wall surface. The same
procedure has been performed in case of the wavy-walled tube (2), with L¯ 5, δ¯ 0.5;
a value for b around unity has been found to be appropriate. In this case the boundary
layer has been seen to extend up to a distance of x

$
D 10. Grid resolution has been

tested by performing several runs, using L¯ 5, δ¯ 0.5 and b¯ 0.5, with N
"

ranging
between 64 and 1024 and N

$
from 24 to 96. No significant differences have been

detected by varying the normal resolution. The axial resolution becomes important
only late in the calculation, when a relevant velocity gradient appears in the x

"
-

direction, but it does not influence the results in the major part of the flow evolution.
The time step has been selected in order to satisfy the diffusive and convective

stability conditions. In the earliest stage of motion, when the boundary-layer thickness
depends by viscous spreading only, the time step guarantees the proper resolution
within the spacial grid if it is smaller than the smallest square grid length, ∆x#

$min
as

ensured by the stability condition. However, a limitation on the early time accuracy is
given by the non-zero normal grid spacing at the wall. In this case, using diffusive
arguments, we can estimate that the solution is not accurate for t! 4∆x#

$min
; care has

been used to keep such a value much smaller than physically relevant times;
furthermore it has been checked for several cases that the subsequent evolution
obtained with different time steps is not affected by this initial inaccuracy.

3. Impulsively started motion

3.1. The boundary layer solution

The time-dependent development of the boundary-layer solution is illustrated in
figures 2 and 3. These plots show the instantaneous vorticity field and the streamline
patterns, respectively, in the (x, η)-plane, for L¯ 5, δ¯ 0.5. The calculations has been
performed with a grid 1024¬96 and a stretching parameter b¯ 1; the grid extends
from the wall to x

$
¯ 100, resulting in ∆x

$min
D 0.05; the time step is 1.2048. The

vorticity is related to the velocity distribution by

ω¯
¥�

"

¥x
$

¯
¥�

"

¥η
1

beη
; (13)

the streamfunction is obtained by integration of the velocity field.
At t¯ 0, the motion is impulsively started from the rest and a thin viscous layer

develops close to the rigid surface while diffusive terms let the vorticity spread normally
to the wall. In the very initial stage of the motion, the boundary layer is almost
symmetrical in the converging and diverging parts of the duct. The vorticity
distribution at t¯ 0.5 is plotted in figure 2(a) and the corresponding instantaneous
streamline pattern in figure 3(a). As time passes, the vorticity at the wall decreases and,
at tD 0.7, a separation point appears at xD 0.9, forming a closed recirculating eddy
attached to the wall. In figures 2(b) and 3(b) the flow pattern is illustrated at t¯ 1, a
short time after the separation has occurred. Subsequently, the recirculation region
close to the wall grows in the x-direction, showing the typical behaviour of the
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F 2. Instantaneous vorticity fields in the boundary layer for δ¯ 0.5 at (a) t¯ 0.5, (b) t¯ 1,
(c) t¯ 1.5, (d ) t¯ 1.75. Contour levels from ®1.05 to 1.95, step 0.1. Dashed line represents the
zero level.

boundary-layer solution in the presence of an adverse pressure gradient (Doligalski &
Walker 1984; Henkes & Veldman 1987). In such a model, the reverse motion on the
wall side of the recirculating region is characterized by a favourable pressure gradient
constant in time, which continuously pushes the flow back. After this, the localized
rapid growth of the cell in a direction normal to the wall is observed at the upstream
edge of the separated region, where the vorticity is concentrated (figures 2c and 3c), at
t¯ 1.5. The final stage of the computed results is shown in figures 2(d ) and 3(d ),
corresponding to t¯ 1.75; shortly after the numerical scheme fails to converge, at tD
1.85. The vorticity distribution near the left-hand side of the eddy shows the typical
spike-like behaviour, which is a forewarning of the terminal singularity of the solution.
It is worth noting that the flow downstream the separated region, in the converging
part of the duct, appears not to be influenced by the dynamics of the recirculation cell ;
that is, separation is essentially a local phenomenon. Furthermore, as can be seen from
figure 2, the position of the singularity of the solution of boundary-layer problem is far
from the wall surface as predicted by Van Dommelen & Cowley (1990). The flow
development is qualitatively the same as found in previous boundary-layer calculations
performed in different configurations, confirming that the initial stage of separation is
completely driven by the external pressure gradient.
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F 3. Instantaneous streamlines in the boundary layer for δ¯ 0.5 at (a) t¯ 0.5, (b) t¯ 1,
(c) t¯ 1.5, (d ) t¯ 1.75. Streamfunction contour levels from ®0.14 to 1, step 0.04. Dashed line
represents the wall zero level.

The flow evolution described in figures 2 and 3 is dependent on the value of the
perturbation parameter δ : small δ implies a weak pressure gradient, while large values
of δ create a strong pressure gradient which accelerates the separation phenomenon.
Nevertheless, the global behaviour of the flow field does not change qualitatively from
the case δ¯ 0.5 described above, and only the time of occurrence of the different
phenomena varies with the external flow differences.

The dependence of the flow evolution on the value of δ can be predicted by a
timescale analysis. Consider the inviscid bulk flow due to the dimensionless imposed
discharge Q

!
¯π and let U(x)¯R(x)−# be the average value of the longitudinal

velocity over the section. A characteristic time of the problem can be defined as

T(δ)¯C ))0dU(x, δ)

dx 1−"))nR
!

U
!

, (14)

with the standard definition for the nth-order norm in a domain $ given by

s f sn¯ 0 1

$&$

r f rnd$1"/n, (15)

where in (14) the domain is the interval $¯ [0,L).
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F 4. Separation time as a function of δ. Computed values from Prandtl simulations (D),
analytical estimates (—).

The start of reversed flow corresponds to the appearance of zero wall vorticity at a
certain time, say t

sep
. In figure 4 the values of t

sep
as derived by the numerical

simulations with δ ranging between 0.02 and 1.75 are compared with T(δ) computed
with n¯ 2 and n¯¢ ; the coefficient C is estimated as 0.57 and 0.44 for n¯ 2 and
n¯¢, respectively, by performing a best-fitting procedure. A good agreement is
observed between the results obtained numerically and the timescale analysis
represented by equation (14). An analogous agreement, with different values of the
coefficient C, is observed in the dependence on δ on the terminal time, here defined as
the time of failure of the numerical scheme, but this is not reported here because of
its non-rigorous definition.

Thus the modifications to the boundary-layer dynamics are contained in the external
flow variations in a sort of self-similarity indicating that the boundary-layer solution
up to separation does not hide any internal instability but is completely driven by the
external inviscid velocity distribution. The simple argument outlined above is able to
predict the occurrence of separation with varying external forcing.

3.2. The Na�ier–Stokes solution

The Navier–Stokes problem has been solved for L¯ 5 and δ¯ 0.5, with Reynolds
number ranging between 10# and 10%. The spatial resolution has been chosen by
performing several runs with different numerical grids and different values of the
stretching parameter a. No particular problems have been detected during this
validation procedure. In what follows, the grid has been fixed to 128¬48, 256¬64 and
512¬64 and parameter a is 1.2, 1.5 and 3, for Re¯ 10#, 10$ and 10%, respectively. The
time step has been chosen in order to satisfy the convective and diffusive stability
conditions; its value is held constant at 1}2048 in all cases ; this value has been checked
as accurately describing the flow after few initial time steps.

In figure 5 the instantaneous streamlines are plotted for Re¯ 10$. At the initial stage
of motion the flow is essentially irrotational and the vorticity is concentrated in a thin
boundary layer close to the tube surface. In a purely diffusive problem the wall vorticity
decreases uniformly along the wall ; in the present case, the flow motion is retarded by
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F 5. Instantaneous streamlines for Re¯ 10$, δ¯ 0.5 at (a) t¯ 0.5, (b) t¯ 1.75. Streamfunction
contour levels from 0 to 0.5, step 0.025, and from 0.5 to 0.55, step 0.01. Dashed line represents the
wall level.
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F 6. Instantaneous vorticity fields for Re¯ 10$, δ¯ 0.5 at (a) t¯ 0.5, (b) t¯ 1.75. Contour
levels from ®37.5 to 62.5, step 5. Dashed line represents the zero level.

the adverse pressure gradient due to the enlargement of the wall profile. Then a
decrease of the wall vorticity and the consequent appearance of a separation point, as
outlined in the previously reported boundary-layer approximation, are expected. The
streamlines at t¯ 0.5 are reported in figure 5(a). The flow is almost irrotational, as can
be seen by the symmetry of the streamline pattern. At tD 0.7 a separation point
appears at the wall, at xD 0.9. A more marked interaction starts to develop between
the boundary-layer flow and the irrotational bulk flow, which is gradually displaced.
As the reverse flow appears, the separation point rapidly moves backward and the
attachment point downstream. The flow field at t¯ 1.75 is reported in figure 5(b),
where the separated region can be observed. At this time, we can recognize a well-
defined vortex in the central region of the recirculation cell.

An enlarged view of the flow evolution described above is reported in figure 6, where
the instantaneous vorticity fields are plotted. At t¯ 0.5, figure 6(a), a minimum in the
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F 7. Instantaneous streamlines at t¯ 2 for δ¯ 0.5: (a) Re¯ 10#, (b) Re¯ 10$, (c) Re¯ 10%.
Streamfunction contour levels from 0 to 0.5, step 0.025, and from 0.5 to 0.55, step 0.01. Dashed line
represents wall level.

vorticity distribution at the wall is observable, due to the decelerating flow. The
presence of the separated region locally increases the boundary-layer thickness ; the
value of the wall vorticity decreases further on, as a consequence of the backward
acceleration of the flow. Then, the vorticity begins to concentrate in the central part of
the reversed-flow region, causing the formation of a central vortex structure, figure 6(b)
corresponding to t¯ 1.75. At this time of calculation, the vorticity is still concentrated
in the boundary layer at the wall while the bulk flow is irrotational, and the injection
of wall vorticity in the main flow has not been detected.

The initial dynamics of the flow field does not show significant differences on varying
Reynolds number in the range 10#–10%, with the exception of the boundary-layer
thickening, which is primarily due to the vorticity diffusion; thus the typical boundary-
layer lengthscale in a direction normal to the wall is proportional to Re−"/# t"/#. At
tD 0.7 a separation point is observed to appear at the wall, for every Re analysed in the
present work; the position of the point moves slightly backward as Re increases. Then
the recirculating region elongates tangentially to the wall. Once the separated region
has formed the flow evolution becomes more dependent on the Reynolds number. At
low values of Re, say ReD 10# corresponding to substantially viscous flow, the
recirculating region grows until it completely fills the enlargement of the tube before
any actual ejection of vorticity occurs. The flow at larger Reynolds number,
characterized by a weaker diffusive contribution, has higher values of vorticity in a
thinner layer at the wall and a vorticity gradient which becomes stronger as Reynolds
number increases. As we have outlined for Re¯ 10$, figures 5 and 6, the vorticity
concentrates into a vortex in the middle of the separated region and the locally reversed
limiting velocity is able to cause a secondary separation.
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In figure 7 the instantaneous streamlines at various Reynolds number are reported,
corresponding to t¯ 2. At this time, the separated region shows the central vortex
structure for Re equal to 10$ and 10%. The vortex appears to be strong enough to induce
a secondary separation, as can be seen in figure 7(c) for Re¯ 10%. Afterwards, the
vorticity inside of the secondary eddy is compressed in a direction tangential to the wall
and then ejected into the irrotational bulk stream. The interaction between the erupted
plume and the mainstream causes the cut-off and shedding of the primary vortex. The
phenomenon occurs at t¯ 1.79 for Re¯ 10% ; the same sequence has been found for
Re¯ 10$, with the secondary separation occurring at t¯ 2.09. The calculation for
Re¯ 10# has been carried out until t¯ 10 but neither the secondary separation nor
the shedding of vorticity have been detected.

4. Comparison between Navier–Stokes and Prandtl solutions

The comparison of the results obtained by solving the Navier–Stokes equations and
the boundary-layer formulation of the problem is a primary objective of this work. The
instantaneous vorticity fields resulting from the two different approaches are plotted in
figure 8; in order to achieve a qualitative comparison between the results, the
coordinate x

$
and the vorticity value of the boundary-layer solution are respectively

divided and multiplied by Re−"/#, where Re¯ 10% is the corresponding Reynolds
number of the Navier–Stokes solution. The vorticity fields at t¯ 0.5 are reported in
figure 8(a) and 8(b), for the Navier–Stokes and Prandtl approach, respectively. The
comparison shows excellent agreement between the solutions. It is important to notice
that at this stage of motion the flow is completely attached to the wall. In figures 8(c)
and 8(d ) the fields are plotted at t¯ 1.75, showing different dynamics of the reversed
flow region. The boundary-layer approach gives the typical vorticity distribution inside
the separated region, see also figure 2(d ) ; the interaction between the upstream flow
and the reversed flow within the separated region induces the localization of a strong
vorticity gradient in the upward part of the recirculating region. On the other hand, the
Navier–Stokes solution is characterized by the localization of this gradient in the
middle of the separated region, corresponding to a well-defined vortex structure inside
the boundary layer as it has been described in §3.2.

The space–time evolution of the wall vorticity can give a global perspective to
analyse the dynamics of the flow as a whole ; results obtained at different values of the
Reynolds number and from the asymptotic computation are reported in figure 9. In the
initial stage of motion, the boundary-layer evolution is completely driven by the
irrotational bulk flow. The vorticity distribution at the wall is not qualitatively
influenced by the Reynolds number, whose effect consists in scaling the boundary-
layer thickness, that is the lengthscale in a direction normal to the wall, and
consequently the value of the wall shear stress. Before the separation has appeared, the
results obtained show a good agreement between the Prandtl and Navier–Stokes
approaches, as pointed out by Henkes & Veldman (1987) and Riley & Vasantha (1989)
for the impulsively started cylinder problem. The separation occurs at tD 0.7, both in
the boundary-layer solution and in the Navier–Stokes ones for all the Reynolds
number investigated here. The position of the separation point appears to be weakly
dependent on the Reynolds number, and moves backward as Re increases, showing the
expected convergence of the Navier–Stokes results to those obtained by the Prandtl
formulation. Once the separation has occurred, a region of negative counterclockwise,
vorticity develops at the wall. At low Reynolds number, see figure 9(a) at Re¯ 10#, the
recirculating cell dynamics is dominated by the diffusive effects. The vorticity layer at
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F 8. Instantaneous vorticity fields at t¯ 0.5: (a) Navier–Stokes solution Re¯ 10% ; (b) Prandtl
solution; t¯ 1.75; (c) Navier–Stokes solution Re¯ 10% ; (d ) Prandtl solution. Contour levels from 10
to 150 (a, b) and ®40 to 120 (c, d ), step 20. Dashed line represents the zero level. Prandtl solution
is scaled to allow proper comparison.

the wall rapidly fills the hollow of the tube. The irrotational flow is confined in the
central part of the duct, resulting in an almost rectilinear stream and the boundary
layer becomes indistinguishable. The adverse pressure gradient gradually weakens and
the flow field evolves to a steady configuration. When the Reynolds number is higher
the evolution after the first separation differs significantly; this can be observed by
comparing figures 9(b) and 9(c) at Re¯ 10$ and Re¯ 10%, respectively. Shortly after
the first separation, the vorticity distribution at the wall shows a smooth minimum
inside the separated region. As the flow evolves the negative vorticity upstream of the
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F 9. Wall vorticity space–time evolution; (a) Re¯ 10#, (b) Re¯ 10$, (c) Re¯ 10%, (d )
Prandtl solution. Thick lines represent the path of the barycentre XF.

minimum begins to grow while the minimum decreases rapidly, this is reflected in a
local growth of the boundary-layer thickness. This process, see tD 1.5, leads to a
strong vorticity gradient tangent to the surface localized in the central zone of the
recirculating cell, as is observable in figures 9(b) and 9(c). Thus the inner flow develops
variations on a short longitudinal lengthscale which is no longer comparable with an
external flow scaling but, rather, with a viscous length. At tD 1.8, a region of positive
clockwise vorticity appears for Re¯ 10%, corresponding to a secondary separation,
figure 9(c) ; for Re¯ 10$, this phenomenon occurs at t" 2, and it is only foreshadowed
at this time of calculation, figure 9(b). In the Prandtl approach, figure 9(d ), the
boundary-layer dynamics is continuously forced by the inviscid adverse pressure
gradient, which is not influenced by the boundary-layer evolution. Thus, the reversed
flow is accelerated upstream and the vorticity gradient concentrates in the upper limit
of the recirculating region.

The wall vorticity evolution is suggestive of the behaviour of the whole boundary-
layer vorticity field. A global measure of the boundary-layer behaviour can be
perceived by looking at the time evolution of a typical minimum tangential lengthscale
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and its localization in the flow field. In order to not be subjected to the numerically
ambiguous evaluation of extreme values, a typical longitudinal lengthscale is evaluated
as

F(t)¯ 9&ωndA:"/n59&0¥ω¥τ1ndA:"/n, (16)

where the integral is computed over the whole flow field and τ is the tangential
direction. The lengthscale defined in (16) can be regarded, when n is large enough, as
the inverse of the maximum vorticity gradient, normalized with the vorticity. The
localization in space of the most relevant longitudinal variations is evaluated from

XF(t)¯
L

2π
tan−"0&0¥ω¥τ1n sin (2πx}L) dA5&0¥ω¥τ1n cos (2πx}L) dA1 (17)

which corresponds to the barycentre of the nth moment of the distribution of the
tangent vorticity gradient computed over the whole flow field, assuming periodicity in
the x-direction. In figure 9 the space–time evolution of the quantity defined in (17) is
plotted for n¯ 8. No qualitative difference has been observed on varying n in the
evaluation of (16) and (17). The barycentre path shows a slow variation for Re¯ 10#,
figure 9(a). Its position shows an abrupt deviation at tD 1.4 and tD 1.6 for Re¯ 10%

and 10$ respectively, moving from the upstream edge of the primary separated region
to the edge of the secondary one, figures 9(b) and 9(c). On the other hand, the Prandtl
results show that during the flow evolution such a position always corresponds to the
upstream edge of the recirculation region, figure 9(d). Furthermore, in the
Navier–Stokes solution the maximum occurs at the wall, while in the Prandtl solution
the terminal singularity is expected to appear far from the surface (Van Dommelen &
Cowley 1990).

In figure 10 the time evolution of the longitudinal length scale F is reported for
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n¯ 8, showing a good convergence between the Prandtl solution and the Navier–Stokes
solutions, computed at various Reynolds number, up to tD 0.3. This period
corresponds to the initial development of the boundary-layer flow due to the inviscid
pressure gradient distribution, and F is essentially an external length scale of O(1). As
time increases the value of F slowly decreases, with slight differences among the
asymptotic and the viscous cases, until shortly after the first separation. These
differences are more marked at low Reynolds number and are imputable to the
diffusive effects. Afterwards, the Prandtl solution shows a continuous regular
decreasing of F, as can be expected from the flow evolution reported in figure 2: the
flow dynamics presents an increasing vorticity gradient at the edge of the separation
cell, until the defined lengthscale becomes comparable with the grid resolution and the
computation fails to converge. The failure depends on a characteristic of the unsteady
boundary layer equations, which has been theoretically demonstrated to approach a
singularity at a finite time (Van Dommelen & Cowley 1990) ; the numerical scheme only
anticipates this phenomenon. On the other hand, the Navier–Stokes solution confirms
the dependence on the Reynolds number. At Re¯ 10%, F is O(1) till tD 1.4, and then
it dramatically decreases ; this occurs at the same instant as the deviation of the
barycentre path, reported in figure 9(c), and it is predictive of the secondary separation.
Such a behaviour can also be observed for Re¯ 10$, at tD 1.6.

5. Discussion

The results obtained by solving the Navier–Stokes equations are in excellent
agreement with the classical boundary-layer approximation until the appearance of the
primary separation and the birth of a region of reversed flow close to the wall surface.
Before the first separation, the boundary-layer flow is driven by the irrotational bulk
flow, which gives the timescale of the phenomenon; the first separation appears at tD
0.7 both for the Navier–Stokes and Prandtl solutions, and the small differences we have
found can be attributed to a weak influence of the viscous effects. As time proceeds, the
separated region dynamics becomes more influenced by the internal boundary layer
scaling which depends quantitatively on viscosity well before shedding. At low
Reynolds number, the secondary separation has not been detected. As the Reynolds
number increases, the viscous solution grows in complexity. The recirculating cell
evolves to a secondary separation, which is the typical condition at the ejection of the
wall vorticity in the external irrotational flow (Doligalski et al. 1994, and references
therein). The secondary separation appears as an internal phenomenon of the
boundary layer where the role of the external solution is placed locally by the vortex
contained inside the boundary layer. The time of appearance of the secondary
separation does not show a significant variation for Re¯ 10$ and 10%, being 2.09 and
1.79 respectively, suggesting, because of the lower bound given by the primary
separation, a slightly smaller asymptotic value for higher Reynolds number. In these
two cases, the primary and secondary separations develop within the boundary layer
and the shedding of vorticity is a subsequent phenomenon.

The presence of a secondary separation is not the only difference between the
Navier–Stokes and Prandtl results. We have shown in the preceding section that
secondary separation is anticipated by other facts. After the first separation, the
vorticity steepens at the upstream edge of the separated cell where the smallest
longitudinal lengthscale is localized. Then, in viscous flow only, a strong vorticity
gradient appears in the middle of the cell foreshadowing the second separation. At this
time the minimal longitudinal lengthscale in the flow moves to the central part of the
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F 11. Instantaneous pressure fields : (a) irrotational, Re¯ 10% ; (b) t¯ 0.5, (c) t¯ 1,
(d ) t¯ 1.5. Isobars levels are separated by 0.1 units.

cell and its value abruptly decreases, to viscous values. At this point a failure of the
Prandtl scaling can be related to the local presence of a longitudinal length comparable
with the normal one. Such a process, which precedes the secondary separation and
occurs earlier as the Reynolds number increases, is completely absent in the boundary-
layer approximation, and it is evident well before the occurrence of the terminal
structure of the Prandtl solution.

This different behaviour has been also detected by comparing the solutions obtained
by solving the Navier–Stokes equations and the boundary-layer approximation for
many problems, e.g. the impulsively started cylinder (Henkes & Veldman 1987; Riley
& Vasantha 1989), the motion upstream of an obstacle (Puhak et al. 1995; Visbal
1991), the impact of a vortex ring on a wall (Walker et al. 1987; Orlandi & Verzicco
1993).

The Prandtl solution is not able to describe the secondary separation and evolves to
a singularity. However, the singular behaviour does not represent the inability to
reproduce a secondary separation. This is also confirmed by the results obtained with
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F 12. Instantaneous vorticity and pressure fields for Re¯ 10% : (a) vorticity, (b) pressure at t¯
1.65; (c) vorticity, (d ) pressure t¯ 1.85. Isobars levels are separated by 0.1 units. Vorticity contour
levels from 2.5 to 52.5, step 5.

the interacting boundary-layer approach, which show the same singular behaviour of
the classical Prandtl solution, but just before the failure of the numerical scheme is able
to describe the splitting of the first recirculating cell and the birth of a small secondary
separation (Henkes & Veldman 1987; Riley & Vasantha 1989; Peridier et al. 1991b).
The local inversion of the pressure gradient is enough to split the primary recirculating
cell and generate a secondary separation. This approach considers the effect of the
interaction only in the boundary condition of the problem, while the structure of the
equations of motion is retained; in particular the pressure field, which is kept frozen
in the Prandtl approach, is allowed to change longitudinally in time while a constant
pressure distribution orthogonally to the wall is still assumed.

In order to clarify the influence of the variation in the pressure distribution on the
separated boundary layer, the pressure field has been computed by integration from the
solution of the Navier–Stokes equations. The irrotational pressure field is reported in
figure 11(a) and we remind readers that this is the pressure field corresponding to every
instant of the Prandtl solution. In figure 11(b) the pressure distribution at t¯ 0.5 is
plotted for Re¯ 10%, showing very small differences with the initial irrotational one,
which result from the small unavoidable influence of viscous resistance. After the first
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separation has occurred, see figure 11(c) at t¯ 1, a small distortion in the pressure field
due to the growing recirculating cell is observable ; this is more evident in figure 11(d )
corresponding to t¯ 1.5. At this time the pressure along the wall is different from the
original field reported in figure 11(a), and it is substantially constant normally to the
surface inside the boundary layer whose thickness can even be defined by this pressure
property. These small longitudinal variations in pressure, neglected in the Prandtl
model, can be reproduced in the interacting boundary-layer approach. It must be kept
in mind that at this point the boundary-layer vorticity field has not rolled up into a
recognizable vortex and, with this value of Re, this corresponds about to the time
where the transition from one type of Prandtl behaviour to a different one, which
precedes the secondary separation, is occurring (see figures 9 and 10).

At subsequent times the boundary-layer vorticity contained inside the circulating cell
begins to roll up into a well-defined vorticity structure. This phenomenon occurs at
viscous scales but its dynamics is driven by an inviscid vortex sheet instability and
occurs very rapidly. The local vorticity field at t¯ 1.65 is reported in figure 12(a) where
a vorticity structure, undoubtedly contained inside the boundary layer, begins to show
up. The development of such a vortex structure is accompanied by the presence of a
pressure structure whose corresponding field is reported in figure 12(b) ; this is
characterized by the typical minimum of pressure inside the vortex. This phenomenon
is far more evident at t¯ 1.81 reported in figure 12(c, d ). At this time there is still no
evidence of any shedding and rather a structured boundary layer containing a well-
defined vortex is found. The pressure field varies locally both in the tangential and in
the normal directions.

Commonly, the terminal structure of the boundary-layer solution is considered the
foreshadowing of the injection of the wall vorticity in the otherwise irrotational
external flow. In mathematical terms the singularity represents the failure of the
boundary-layer scaling due to growth of the normal lengthscale up to the outer flow;
in physical terms this corresponds to the phenomenon of shedding. In the present case
this picture does not apply. The failure of the asymptotic scaling occurs, in physical
terms, well before shedding and, in the Prandtl solution, well before the terminal
singular behaviour. It is determined by a local decrease of the longitudinal length up
to the viscous scale. This abrupt reduction is not related to an eruption of the boundary
layer and occurs corresponding to a roll-up of the primary vorticity layer in the middle
of the circulating cell ; the minimum longitudinal length localizes at the wall and has
no relation to the singularity found far from the wall in the asymptotic formulation.
The formation of a vorticity structure inside of the boundary layer is accompanied by
a strong local pressure variation. This is the proof of the failure of Prandtl scaling
which would imply that the normal equation of motion simplifies to constant pressure
along this direction.

6. Conclusions

The impulsively started flow in a wavy-walled tube due to a constant imposed
discharge has been investigated. It represents a prototype model for the separation
dynamics in non-uniform closed pipe systems during transient flow characterized by a
rapid acceleration. The problem has been studied by numerically solving both the
Navier–Stokes equations at various Reynolds number and the Prandtl asymptotic
formulation.

The general separation dynamics has been analysed. In the early stage of motion the
flow is essentially irrotational, with the exception of a thin layer of vorticity close to the
tube surface. The flow evolution is weakly influenced by the Reynolds number until the
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first separation has occurred. The pressure distribution of the inviscid bulk flow drives
the phenomenon, whose timescale can then be computed explicitly a priori. This has
been verified by integration of the boundary-layer problem with varying wall profile
steepness.

Once the primary separation has occurred, the differences between the two
approaches increases as time passes. The Prandtl solution evolves to a terminal
singularity, characterized by the concentration of vorticity in the upstream edge of the
recirculating cell. On the other hand, the Navier–Stokes solution begins to depend on
the Reynolds number. As the Reynolds number increases, the primary separated
vorticity departs from the asymptotic model dynamics. The strongest vorticity gradient
along the wall moves from the edge of the cell to the middle part of the recirculating
region and organizes itself in an easily recognizable vortex structure contained inside
the boundary layer. This is characterized by a local reduction of the longitudinal
lengthscale to values comparable with the boundary-layer thickness. The vortex
development is associated with the appearance, within the boundary layer, of a local
minimum in the pressure distribution, which cannot be captured in the Prandtl
formulation of the problem. Even though the boundary layer is still of small thickness,
consistent with the Prandtl scaling, such a scaling fails locally inside the boundary layer
and the evolution leading to the terminal singular structure does not have a physical
counterpart in the high-Reynolds-number problem.

The common interpretation for the failure of the asymptotic scaling as due to the
local growth of the boundary-layer thickness and, physically, to shedding of vorticity
into the outer flow does not apply to the present case. The failure is here shown to be
associated with the presence of a vorticity structure of comparable longitudinal and
normal dimensions contained inside the boundary layer itself.

The validity of these observations cannot be directly extended to different boundary-
layer flows. In fact this is a internal axisymmetric problem, thus pressure variations
reflect strongly in the field constrained in a closed geometry and the motion of vorticity
from the wall implies a compression of circular vortex lines with the consequent
variation of enstrophy. These two constrains are not present in a two-dimensional
boundary-layer flow. Particular care must be taken in transferring the results to the
case of vortex-induced separation. In the present work the inviscid external flow
represents transport in a direction tangent to the wall which is not favourable to an
eruption of vorticity. The limiting external velocity in vortex-induced boundary-layer
problem usually contains stagnation points and a compression towards the separating
saddle ; thus a thickened boundary layer has a tendency to erupt, driven by the external
velocity boundary condition, and the viscous–inviscid interaction drives the flow
normally from the surface rather than tangentially.
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